Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis
نویسندگان
چکیده
We show that the support vector machine (SVM) classification algorithm, a recent development from the machine learning community, proves its potential for structure-activity relationship analysis. In a benchmark test, the SVM is compared to several machine learning techniques currently used in the field. The classification task involves predicting the inhibition of dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine learning repository. Three artificial neural networks, a radial basis function network, and a C5.0 decision tree are all outperformed by the SVM. The SVM is significantly better than all of these, bar a manually capacity-controlled neural network, which takes considerably longer to train.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملApplications of Support Vector Machines in Chemistry
Kernel-based techniques (such as support vector machines, Bayes point machines, kernel principal component analysis, and Gaussian processes) represent a major development in machine learning algorithms. Support vector machines (SVM) are a group of supervised learning methods that can be applied to classification or regression. In a short period of time, SVM found numerous applications in chemis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & chemistry
دوره 26 1 شماره
صفحات -
تاریخ انتشار 2001